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Boundary Element Analysis of a Trapezoidal

Transmission Line
B. Toland and T. Itoh, Fellow, IEEE

Abstract—A transmission line with a trapezoidal cross section

is analyzed using the boundary element method (BEM) aud the
quasi-static approximation. By utilizing a convenient choice for

the fundamental solntion, the efficiency of the method is clearly

established. The analysis is verified by comparisons with results

in the literature and measured data.

I. INTRODUCTION

A S the desired operating frequency of transmission lines

increases, the conductor losses also increase. It is,

therefore, paramount that the currents on the metal surfaces

bereduced. Recently, several structures have been designed

to achieve this goal [1]. One possible candidate is a transmiss-

ion line with a trapezoidal cross section, which is shown in

Fig. 1.

The trapezoidal geometry does not lend itself easily to

most conventional methods of analysis. The finite-element

method (FEM) may be used (e.g., [2]), although with some

difficulty since this is an open structure. The boundary-ele-

ment method (BEM) may also be used ([3] – [5]), and with

advantage. By a proper choice for the fundamental solution,

(i.e., Greens function), the computation can be reduced to
two line integrals over the contour 17abCd(for the infinitely

thin strip). This greatly reduces the amount of computation

involved, and is clearly superior to the FEM in this respect.

II. FORMULATION

For a transmission line with constant cross-section, the

quasi-TEM approximation entails the solution of Laplace’s

equation in two dimensions. The application of the BEM in

such a situation is well known [6]. Essentially, the potential

on the boundary of a region R is given by

Cju(xi, Y,) + ~ ‘~”~r = J.q~”dr, (1)

where U( xi, ~i) is the desired potential on the boundary ~

q = au/an, with i? the unit normal out of the boundary, and

c, is a constant determined by the smoothness of the bound-

ary. The contour r depends on which region is enclosed. For

Region 1, r consists of the path along the groundplane from

point a to infinity, r~, the path along the groundplane from
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Fig. 1. Layout of the trapezoidal transmission line. Regions 1 and 2 consist
of homogeneous dielectrics 6,1 Co and er2 Co, respectively.

infinity back to d, and the path abed. The contour for

Region 2 is the is identical, but excludes the path I’m . The

corresponding fundamental solution and normal derivative

are u* and q*, respectively. Since, both u and u* are zero,

the contour at infinity can be eliminated, and the ground

plane path is eliminated for the left-hand side integral. The

remaining task is to choose a fundamental solution u* that

also obeys the boundary conditions on the ground plane,

thereby rendering

c,u(x~! Yl) +
/

uq* dI’ =
/

qu* d17 (2)
abed abed

This is accomplished by solving

V2U*= 8(X -X’)ti(y - y’),

for the homogeneous half space y >0 (i.e., Fig. 1) and then

applying the method of images, yielding

–1

[/

(x- x’)’ + (y - y’)’
u*(x, y; x’, y’) = ~ln

1(X-x’)z+ (Y+Y’)2 “

(3)

It is clear that (3) will yield the desired result on the ground

plane. Equation (2) is then discretized for Regions 1 and 2

using constant basis functions, and the following boundary

conditions are applied for the contour segment bc:

The interface conditions along segments ab and cd are

The basis functions were applied on both equal and unequal
intervals (i.e., finer towards the edges), with similar results

in either case. The system of equations for the two regions

are then combined and solved as in [6]. From the calculated
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TABLE I
CHARACTERISTIC IMPEDANCE OF MICROSTRIP WITH e, = 1.0

Convergence of Characteristic Impedance

0.1 1.0 2.0 10.0

~~From [7]) (Ohms) 265 127 90 30

Z (From BEM in this letter) 264 127 90 30

values of the flux q on the strip, the capacitance, characteris-

tic impedance and phase velocity can be calculated in stan-

dard fashion (e.g., [3]).

III. RESULTS

Since this structure has only recently been proposed, there

are few established results in the literature for which compar-

isons can be made. With C,l = er2 = 1.0, a comparison with

Wheeler [7] can be made, and the results are given in Table

I. Convergence was tested by increasing the number of basis

fimctions until the characteristic impedance variation was less

than 0.25 %. A plot of a typical convergence check is given

in Fig. 2. Several trapezoidal lines have been designed and

fabricated with different values of the structure parameters

[8], all to achieve a 50 ohm characteristic impedance. A few

of the combinations are shown in Table 11, along with

characteristic impedance values calculated by the BEM. The

measured return loss is 20 db or greater, and the calculated

values and fall well within this range.

IV. CONCLUSION

A new transmission line structure has been analyzed using

the BEM. By a proper choice of the fundamental solution,

this method is shown to be very efficient in analyzing this

structure. Comparisons agree well with established results,

and some experimentally verified design data is given.
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