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Boundary Element Analysis of a Trapezoidal
Transmission Line

B. Toland and T. Itoh, Fellow, IEEE

Abstract—A transmission line with a trapezoidal cross section
is analyzed using the boundary element method (BEM) and the
quasi-static approximation. By utilizing a convenient choice for
the fundamental solution, the efficiency of the method is clearly
established. The analysis is verified by comparisons with results
in the literature and measured data.

1. INTRODUCTION

S the desired operating frequency of transmission lines

increases, the conductor losses also increase. It is,
therefore, paramount that the currents on the metal surfaces
bereduced. Recently, several structures have been designed
to achieve this goal [1]. One possible candidate is a transmis-
sion line with a trapezoidal cross section, which is shown in
Fig. 1.

The trapezoidal geometry does not lend itself easily to
most conventional methods of analysis. The finite-element
method (FEM) may be used (e.g., [2]), although with some
difficuity since this is an open structure. The boundary-ele-
ment method (BEM) may also be used ([3]1-[5]), and with
advantage. By a proper choice for the fundamental solution,

(i.e., Greens function), the computation can be reduced to -

two line integrals over the contour T, ., (for the infinitely
thin strip). This greatly reduces the amount of computation
involved, and is clearly superior to the FEM in this respect.

II. FORMULATION

For a transmission line with constant cross-section, the
quasi-TEM approximation entails the solution of Laplace’s
equation in two dimensions. The application of the BEM in
such a situation is well known [6]. Essentially, the potential
on the boundary of a region R is given by

éiu(xi,yi) +/r ug*dr = /F qu*dr, (1)

where u(x;, ;) is the desired potential on the boundary,
g = du/dn, with A the unit normal out of the boundary, and
c; is a constant determined by the smoothness of the bound-
ary. The contour I' depends on which region is enclosed. For

Region 1, T consists of the path along the groundplane from

point a to infinity, T,,, the path along the groundplane from
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Layout of the trapezoidal transmission line. Regions 1 and 2 consist
of homogeneous dielectrics €,¢; and €,,€,, respectively.

Fig. 1.

infinity back to d, and the path abcd. The contour for
Region 2 is the is identical, but excludes the path I', . The
corresponding fundamental solution and normal derivative
are u* and g*, respectively. Since both u and u* are zero,
the contour at infinity can be eliminated, and the ground
plane path is eliminated for the left-hand side integral. The
remaining task is to choose a fundamental solution u* that
also obeys the boundary conditions on the ground plane,
thereby rendering

cu(x;, y) + /

abed

ug*drl = qu* dT (2)

abed

This is accomplished by solving
Viu* = 8(x —x)6(y ~ y),

for the homogeneous half space y = 0 (i.e., Fig. 1) and then
applying the method of images, yielding

-1
u(x,y; x,y) = -2-;_—1n

(x=xy+ (=)
(x=x)V+ (y+y)

(3)
It is clear that (3) will yield the desired result on the ground
plane. Equation (2) is then discretized for Regions 1 and 2

using constant basis functions, and the following boundary
conditions are applied for the contour segment bc:

1_ 2 _
u, =u; =V.

The interface conditions along segments ab and cd are

uj = uj and ¢,1q; = —¢€,,9; -

The basis functions were applied on both equal and unequal
intervals (i.e., finer towards the edges), with similar results
in either case. The system of equations for the two regions
are then combined and solved as in [6]. From the calculated
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TABLE 1
CHARACTERISTIC IMPEDANCE OF MICROSTRIP WITH €, = 1.0
Ws
73 0.1 1.0 2.0 10.0
Z (From [7]) (Ohms) 265 127 90 30
Z (From BEM in this letter) 264 127 90 30

values of the flux g on the strip, the capacitance, characteris-
tic impedance and phase velocity can be calculated in stan-
dard fashion (e.g., [3]).

III. REsuLTS

Since this structure has only recently been proposed, there
are few established results in the literature for which compar-
isons can be made. With ¢,, = ¢,, = 1.0, a comparison with
Wheeler [7] can be made, and the results are given in Table
I. Convergence was tested by increasing the number of basis
functions until the characteristic impedance variation was less
than 0.25%. A plot of a typical convergence check is given

in Fig. 2. Several trapezoidal lines have been designed and -

fabricated with different values of the structure parameters
[8], all to achieve a 50 ohm characteristic impedance. A few
of the combinations are shown in Table II, along with
characteristic impedance values calculated by the BEM. The
measured return loss is 20 db or greater, and the calculated
values and fall well within this range.

IV. ConcLusioN
A new transmission line structure has been analyzed using
the BEM. By a proper choice of the fundamental solution,
this method is shown to be very efficient in analyzing this
structure. Comparisons agree well with established results,
and some experimentally verified design data is given.
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